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The non-Gaussian probability distribution of a velocity field itself is found in the numerical
simulation of uniform straining flow turbulence. The distribution does not decrease as fast as
a Gaussian distribution. The moment method to determine a limiting probability distribution,
proposed by Sinai and Yakhot [Phys. Rev. Lett. 63, 1962 (1989)] for the passive scalar field, is
examined in detail for the present velocity field. It is found by the examination of the conditional
probability distribution on vorticity magnitudes that the non-Gaussianity is caused in the tubelike
high vorticity region, two-dimensional structure, appearing in the turbulent flow. The results are
also compared with those of a passive scalar field and a three-dimensional flow with two-dimensional
structure, which makes the contribution from pressure term to such distribution more apparent. It
follows that the non-Gaussian distribution is due to the superior dissipation effect to the pressure
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(nonlinear) effect.

PACS number(s): 47.27.Gs, 47.27.Jv

I. INTRODUCTION

Probability distribution functions have been eagerly
investigated in relation to the intermittency of fully de-
veloped turbulence. Intermittency may be noticed as the
probability distribution is much flatter than the Gaussian
for the large value of the variable. Intermittency of fully
developed turbulence remains one of the most poorly un-
derstood phenomena. It is a generally accepted percep-
tion that homogeneous isotropic turbulence is approx-
imately described by Kolmogorov’s cascade theory [2],
i.e., generation of small eddies by the process of breakup
of the largest eddies. Landau [3] pointed out that the
fluctuation of the dissipation rate in the field should be
reflected, which leads to the modification of the original
cascade theory.

The study of intermittency originates from the devia-
tion of higher moments of velocity difference, i.e., struc-
ture functions, from the scaling law of the Kolmogorov
theory, which should be modified to include the fluctua-
tion of energy dissipation. Restricting ourselves to this
point only, we should study two-point correlation func-
tions instead of single-point ones. Many researchers have
focused their attention on the non-Gaussian distribution
of velocity derivatives, limiting the case of velocity dif-
ferences. I think this non-Gaussianity is caused by the
existence of intense vortex structure in turbulent flow.
On the other hand, some theoretical models are based
on the Gaussianity of velocity field, which is supported
experimentally in isotropic turbulence. However, to the
best of my knowledge, there is no theory to prove the
Gaussianity of velocity field. I think it is not unusual
that if the existence of a vortex structure causes a veloc-
ity derivative field to be non-Gaussian, it also affects the
distribution of the velocity field itself. In this paper, I
do not treat the original problem of turbulence intermit-
tency but rather the role of vorticity structure in the dis-
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tribution of velocity. Although this is just a preparatory
study, I may give some insight into the original problem
and improve upon some theoretical models.

Various laboratory and computer studies of isotropic
turbulence show that the distribution of velocity is nearly
Gaussian, while the distributions of velocity differences,
vorticity, and passive scalars are non-Gaussian [4,5],
whose foot decreases more gradually than the Gaussian,
i.e., a flattened distribution. This flattened distribution
becomes more pronounced as the Reynolds number in-
creases, which suggests that any theory based on the
Gaussianity of the field might be deficient for the suffi-
ciently large Reynolds number or especially for the high-
order moments of the velocity differences. Several mod-
els [1,6-10] have been proposed to explain this deviation
from the Gaussian distribution.

Recent computer simulations reveal that there exist
small-scale vortex structures produced by the compe-
tition between viscous relaxation and vortex stretching
[11-13]. Most of these high vorticity regions appear as
tubelike structures. These structures are thought of as
the key to understand the intermittency of turbulence.
Moreover, since this field may dominate the dynamics, it
is important to investigate the possible effects of the rel-
atively large-scale, long-living structures on small-scale
properties of turbulence.

Most of the research about the intermittency has
treated only the isotropic field. Little is known about
the effects of anisotropy on the statistics, the distribu-
tion of velocity, its difference, and so on. Linear-flow tur-
bulence, shear-, rotating-, and straining-flow turbulence
have been investigated as a prototype of distortion and
anisotropic turbulence. (A straining flow is sometimes
referred to as a stagnation flow.) The rapid distortion
approximation [14] is one of the well known theories for
anisotropic turbulence. This approximation, however, is
essentially linear, so that it predicts the normalized dis-
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tribution will be unchanged under the rapid distortion.
Although vortex stretching plays an important role to
form the fine structure, it seems that straining-flow tur-
bulence is less studied than shear- or rotating-flow tur-
bulence. We, therefore, treat a straining-flow turbulence
in the present study among the other linear flows.

The structure of this paper is as follows. The next
section provides some notations and the basic equations
with a uniform straining flow. Our purpose here is to
clarify the effect, independent of external forces, of each
term appearing in the Navier-Stokes equation on the non-
Gaussianity. In Sec. III, we apply Sinai and Yakhot’s
method [1] to the present flow. Formally similar results
are obtained for the velocity and passive scalar field ex-
cept for the contribution from the pressure term. Numer-
ical results about the probability distribution are shown
in Sec. IV. We examine the method developed in Sec.
IIT in detail and further investigate the numerical results
by using the asymptotic method in Sec. V. Calculating
the obtained expression numerically, we confirm that the
imbalance between the pressure and viscous effect causes
the non-Gaussian distribution. The results are discussed
in the last section.

II. BASIC EQUATIONS
WITH A UNIFORM STRAINING FLOW

We consider a viscous incompressible fluid with a uni-
form straining flow, a mean flow component. Let us di-
vide the velocity field v into the mean and fluctuation
components u, as usual:

v = (A1Z1 + u1, A222 + Ug, A3z + us). (2.1)

Setting A; + Az + A3 = 0, one knows divv = divu.
And, for simplicity, all A,’s are set as time-independent
constants in the present study.

In the following notation, repeated latin subscripts
mean the summation from 1 to 3 while repeated greek
subscripts mean no summation. Then, the governing
equations for the fluctuation components of velocity field
under the uniform straining flow are the Navier-Stokes
equation and the continuity equation of the following
form:

Oug Ou,, Ou,  Op 82ug
5t T A% Oz; + Aatia +u; dz;  Oza tv 8z;2’
(2.2)
Bu]-
3:1,']' ’ (2 3)

where p and v are, respectively, the fluctuation pressure
and the kinematic viscosity, and the unperturbed pres-
sure field is set po = A%x%/2. The time evolution of a
passive scalar field ©, diffusing and passively advected
by the velocity field, is determined by the equation

00 00 00

+Ajxj— tuj— = o*e
ot T iTigy; TYigg, "

el (2.4)

where & is the diffusivity.
Let us introduce a transformation [15]

Xo = exp(—Aat)za = TaZa, (2.5)

which eliminates the explicit dependence on space vari-
ables, the second term on the left-hand side (LHS) of
Egs. (2.2) and (2.4). These basic equations are then
rewritten, respectively, as

Otuq + Aqa + u;jTj0juq = —To0.p + Vszafua, (2.6)

T;05u; = 0, (2.7)
0:0 + ujTije = Nsza]?@, (2.8)
where 8, = % and it is also used in the following

notation. With a periodic boundary condition, one is
able to use the standard pseudospectral method in the
numerical simulation, although the coefficients are now a
function of time.

III. MOMENT METHOD
TO FIND PROBABILITY DISTRIBUTION

Sinai and Yakhot [1] investigated the limiting prob-
ability distribution of the passive scalar field by using
the equation for passive scalar moments. They showed
that if they chose the form of the conditional probability
of a passive scalar field, ¢(y|X) in their notation, and
parameters in it, then their expression could fit the non-
Gaussian probability distribution of the scalar obtained
in the experiment. Parallel discussion to their idea is
available also for the present problem. Let us introduce
a normalized velocity,

2 ul

Yo = tuz)’

((va) = 1).

(3.1)

The () means the averaged quantity over the whole space.
The governing equation for the 2nth moments of the nor-
malized velocity field is

0" _ 2n[(pTadatia) — v{(T;0;ua)?)]
ot (ug)
x{(2n — 1) (3" *wl) — (3"},

(3.2)
where

w2 _ pTaBaua - u(Tjajua)z

7 (pTaBatia) — V{(Tj0;ua)?)’

(3.3)

The exact relation for the moments in the stationary
state is

(2n — 1) (3" *w3) = (v3"). (3.4)
Introducing the joint probability distribution

P(va,ws), let us seek the solution satisfying the rela-
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tions; P(vg,Wa) = P(va)Q(Wa|va) and v2P(v,) tends
to zero for arbitrary m as v, become infinity. Then,
Eq. (3.4) can be read as

(271—1)// V2202 P(va, Wa) dVadwe

=//vi"P(va,wa)dvadwa, (3.5)

and partial integration about w, further reduces it to

A <d1;(,i") a(va) + P a)dq“(”°‘)) Ve

_ / V2" P(va)dva, (3.6)

where use has been made of ¢o (va) = [ w2 Q(Wa|va)dwa.
Then the differential equation for P(v,) is

dP Vo dqa Vo
Pa) o (va) + Pua) 22—y p(v,).  (37)
And we can solve this equation as
C Y zdz
P(vy) = ——— exp —/ R 3.8
() = o) ( 0 qa(m>> (38)

where C is a normalization constant.

The expression of (3.8) is similar to that obtained by
Sinai and Yakhot, so the same arguments also hold here.
If w, is statistically independent of vy, that is go(va) =
1, we obtain the Gaussian distribution:

v2
P(vy) = Cexp (——23) .

And if the distribution is non-Gaussian but close to it, we
can expect the leading form to be g (va) = co+cyv2 for a
not too large value of |v,| after considering the symmetry
with v, ¢ —v4. And we also expect that co = 1 and |c;|
does not take as large a value. Then, Eq. (3.8) gives the
explicit expression for the distribution as

c

(co + c1v2)

(3.9)

P(va) = (3.10)

-
1+E

In Fig. 1 are the lines of probability distribution for the
several values of ¢;. There, we set co = 1, because by

1
replacing the variables (v, C) with (v44/co, C’c(l)+ 1) we
obtain the same figure. From this figure, one knows that
the positive value of c¢; corresponds to the flattened dis-
tribution.

At this stage, the following two things should be noted.
First, the contribution from the second term on the LHS
of (2.2), the added term for the linear flow, disappears in
the governing equation for the 2nth moments of the nor-
malized velocity field, Eq. (3.2), which also determines
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FIG. 1. Probability distribution of velocity when

ga(va) =1 — c1v2. Solid line represents Gaussian distribu-
tion (e1 = 0). Dotted, short-dashed, and long-dashed lines
are, respectively, the lines for ¢; = —1/16, 1/16, and 1/8.

the probability distribution function of the velocity field.
This corresponds to the fact that the rapid distortion ap-
proximation may not explain any deformation of a dis-
tribution function under the effect of a linear flow. In
other words, under the linear transformation Gaussian
distribution remains as it is. Second, considering the two
variables (vq,wo) appeared in the joint probability distri-
bution function, w, is made of both its dissipation term
and the pressure term, while for the passive scalar it is
made of its diffusion term only [1]. Contemplating the re-
ported fact that a velocity field is a Gaussian distribution
and a passive scalar is not for the isotropic turbulence,
one might think that the velocity (or passive scalar) field
and its dissipation (or diffusion) field is not statistically
independent, though the pressure field, through the non-
linear effect of mode coupling, causes the two fields (vq
and wy) to be independent of each other.

IV. NUMERICAL RESULTS
FOR THE PROBABILITY DISTRIBUTION

In this section we present the numerical results ob-
tained in the simulations of Egs. (2.6) — (2.8). The
initial field data (INI) were obtained by simulating the
forced isotropic turbulence until the field achieved the
statistically steady state. We simulate freely decaying
turbulence for the isotropic case, all A, = 0, and the
anisotropic case. Passive scalar fields are also simulated
for both cases with the same initial condition as u3 in
INI. The parameters used in the present simulations are
summarized in Table I. We will use shorthand notation,
INI, FR6, ST4, YZO0, and YZ2, to represent each field for
convenience. We chose v = k = 10/1024, which guar-
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TABLE 1. Parameters used in the numerical simulation. N; is the grid number in the ¢th direction.

Fields N1 X Nz X Na (A1,A2,A3) (|'u.|2/2> (|w|2/2> (@2> t ts Re)\
INI 128x128x128 (0,0,0) 1.312 57.25 0.441 2.347 0.093 32.58
FR6 128x128x%128 (0,0,0) 0.761 35.74 0.190 2.179 0.118 23.84
ST4 256x128x128 (2,-1,-1) 1.176 59.27 0.254 2.032 0.092 28.51
YZo 0x256x256 (0,0,0) 0.050 50.00 5.000 0.100 64.55
YZ2 0x256x256 (0,0,0) 0.018 13.94 6.378 0.189 43.57

antees the required numerical resolution as Kn = 2 for
K = 64 and (|w|?) = 100, where K is the maximum wave
number and 7 = (v?/(|w|?))}/* is the Kolmogorov scale.
Details of the numerical method and the results about
the field structure will be shown in a separate paper [16].
Although several other types of ambient straining flows,
such as (A1, A2, A3) = (+,+, —), are simulated, here we
show only one typical case, (A41,A2,43) = (+,—,—),
which exhibits more clearly the (positive) straining ef-
fect on a probability distribution.

In Fig. 2, the P(v,)’s with the straining flow
(A1, A2,A43) = (2,—1,—1) at time t = 0.4 (ST4) start-
ing from INI are plotted to show how it deviates from
Gaussian distribution by the straining (anisotropic) ef-
fect. This and the following graphs are made from in-
stantaneous data, so that the points are scattered in the
region where the variable takes a large value. We draw
error bars to show positive-negative (left-right) asymme-
try, which is zero ideally because of the symmetry of
the system. Figure 2 clearly shows that the probabil-
ity distribution in the positive straining direction, P(v;),
is much flatter than the Gaussian distribution, which is
similar to that observed in a passive scalar field. On the
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FIG. 2. Probability distribution of velocity for ST4. Cir-
cle, triangle, and square are, respectively, P(v1), P(vz2), and
P(v3). Error bars are also drawn to show the positive-negative
asymmetry.

other hand, those in the other two directions are nearly
Gaussian. For the lack of a sufficient data number,
the plotted points for P(v;) and P(vs) begin to depart
slightly for the region where the gradually decreasing foot
is observed in P(vy), that is, |vs| > 3. But from this fig-
ure for ST4, one may safely say that the ambient uniform
straining flow affects the distribution of velocity field. Al-
though all distributions are converged into the Gaussian
distribution in the region |vs| < 3, before being normal-
ized the standard deviation in the positive straining di-
rection is almost half of those in the other two directions.

To investigate the cause of this flattening and to know
the relation with vortex structures, conditional probabil-
ity distributions of v; on vorticity magnitudes are calcu-
lated and plotted in Fig. 3. The magnitude of vorticity
norms are classified into five regions. One knows that the
deviation from the Gaussian distribution is mostly made
in the high vorticity region, wy (= |w|/(|w|?)'/?) > 1.
Black marks are used in the figure to emphasize this phe-
nomenon. These conditional probability distributions are
not normalized to be 1 when integrated, but normalized
to show the rate of the number of data, that is, summa-
tion for these five graphs gives 1.
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P(vy)
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FIG. 3. Conditional probability distribution of the first
component of velocity, v, on vorticity magnitudes for
ST4. The magnitudes of vorticity norms are classified
into five regions: O, 0 < wny < 1/4; A, 1/4 < wn < 1/2;
0,1/2<wn<1; O, 1<wn <25 %, 2< wn < 4.



As pointed out in the preceding section, the formal
difference appeared in the moment expression for passive
scalar and vorticity is the contribution from the pressure
term in the Navier-Stokes equation. To see the role of the
nonlinear term, the pressure term, we also calculated the
probability distribution of the passive scalar field in the
freely decaying turbulence. In Fig. 4, the probability dis-
tribution of the passive scalar field without the straining
flow is plotted with those of the velocity field for FR6,
at t = 0.6 starting from INI. Because of the decrease
in the Reynolds number and spending not enough time
to evolve, the deviation of the passive scalar’s distribu-
tion from Gaussian is not as large as that reported in
the other larger Reynolds number simulation [4] and ex-
periment [5]. We may be able to say that P(v,) is still
nearly Gaussian but P(6) has a slightly larger foot, where
6% = ©2/{©?%). One then might think that the pressure,
nonlinear, effect contributes to form the Gaussian distri-
bution the viscous effect contributes to flattened distri-
bution.

The conditional probability distribution of the passive
scalar field is also calculated and plotted in Fig. 5. The
deviation from Gaussian distribution is mostly seen in
the region of low vorticity magnitude, |wy| < 1/2, which
makes a contrast with the result for the conditional prob-
ability of v; for ST4. This may be understood by consid-
ering the opposite effect of nonlinearity, i.e., stretching:
in a vorticity equation the stretching intensifies the field,
whereas in an equation of the gradient of a scalar field
it rarefies the field. Intense vorticity region and intense
passive scalar region are mutually exclusive.

To confirm the effect of the pressure term and
the vortex structures, we further simulated the three-
dimensional flow having two-dimensional structure, that
is, we retain only the Fourier elements with k, = 0. The
initial condition (YZ0) is random and different from the

0.1 |

0.01 ¢ E
P(vy)
P(8)
0.001 | :
0.0001
0 1 2 3 4 5
8, vy

FIG. 4. Probability distribution of passive scalar (o) and
velocity (O, A,O) for FR6.
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FIG. 5. Conditional probability distribution of passive

scalar field on vorticity magnitudes for FR6. Usage of each
mark is the same as in Fig. 3.

above simulations, INI. The initial energy spectrum has
the form E(k) o k*exp(—k?/kZ), where k? = k2 + k2,
and ko = 20 and v = 0.02 are employed in the present
simulation. It should be noted that there still re-
mains three-dimensional aspects, vortex stretching and
nonzero helicity, both of which are absent in a usual two-
dimensional flow. The P(v4)’s are plotted in Fig. 6 for
YZ2, at t = 2 starting from YZ0. The probability dis-
tribution of v; is deviated from Gaussian similar to that
of the passive scalar field, while those of the other two

0.1

P(vﬂf)

0.001 |

0.0001

v&

FIG. 6. Probability distribution of velocity field with the
two-dimensional structure for YZ2. Circle, triangle, and
square are, respectively, P(v1), P(vz), and P(vs).
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TABLE II. The dependence of go on ve, and g, on 6.
[val
Moment — % - 1 - % - - -g— - - % - - % — 5
INI
q1 0.969 0.982 1.004 1.004 1.030 1.100 1.142 1.146 1.161 1.180
q2 0.981 0.981 0.992 1.003 1.010 1.032 1.076 1.121 1.141 1.165
q3 0.961 0.978 1.010 1.050 1.074 1.110 1.082 1.093 1.121 1.164
ST4
q1 0.924 0.960 1.010 1.041 1.096 1.168 1.260 1.319 1.362 1.370
q2 1.014 0.996 0.951 0.951 0.955 0.997 1.034 1.083 1.110 1.072
q3 0.949 0.987 1.020 1.044 1.077 1.115 1.154 1.145 1.148 1.171
FR6
gs 0.997 0.991 0.957 1.018 1.141 1.301 0.754 0.162 0.076 0.018
ST4
qs 0.949 1.015 0.847 1.118 1.343 1.414 0.803 0.239 0.108 0.025

components, v, and vs, are nearly Gaussian. This devia-
tion is the most noticeable among the graphs exhibiting
flattening and spreads over almost the whole range of v,
in Fig. 6. One can intuitively understand it by consid-
ering that the governing equation for v; begins to have
the same form as that of a passive scalar field in two
dimensions, advected by the “velocity” (ve,v3) and dif-
fusing. The conditional probability distribution is also
calculated. It shows that this flattening is mostly caused
in the region where the vorticity has a large value, al-
though the graphs are omitted here.

V. ASYMPTOTIC METHOD
FOR THE NON-GAUSSIAN DISTRIBUTION

In order to check the argument in Sec. III to derive
the probability distribution by using the relation between
the moments, we calculate go(vo) for both fields whose
probability distributions are nearly Gaussian and non-
Gaussian obtained in the above simulations. The results
are summarized in Table II. We divide v, or 6 into ten
intervals, so that the fluctuation of the data is not small,
perhaps because of the insufficient number of data. For
the field INI, corresponding to the Gaussian distribution,
all the values of the g,’s are nearly 1 as predicted in the
moment method, but slightly increases with v,. And
consistent with the result that P(v,) shows flattened dis-
tribution and P(v2) and P(vs) are nearly Gaussian for
ST4, q; is a clearly increasing function of v; while g, and
g3 are almost constant and equal to 1. Contrary to our
expectation of the increase of g, with 6, for both FR6
and ST4, ¢, increases only in the range § < 3 and be-
yond this range it decreases rapidly. This might be due
to the insufficient Reynolds number, which is supported
by the fact that ¢, for ST4 is larger than that for FR6.

The moment method, however, cannot explain why the
¢ = %%:73% takes a positive value, even if a field with flat-
tened distribution is isotropic. Furthermore, under the
anisotropy of a linear flow, the rapid distortion approxi-

mation does not predict the deviation from Gaussian of
a velocity field whose distribution is Gaussian before dis-
tortion. To the best of my knowledge, no theory can
explain the non-Gaussianity of the velocity field in an
anisotropic turbulence. We focus our attention here on
the deviation from the isotropic turbulence under the ef-
fect of a uniform straining flow. Using the asymptotic
method, we intend to explain the non-Gaussianity of the
velocity field in the positive straining direction. Let us
define the “one-directional dissipation rate”:

€ = —TapOoug + uTjZ(ajua)z, (5.1)
the w? introduced in (3.3) is written as w2 = €,/ (€q)-
For |Aqt| € 1, T, may be expanded as T, ~ 1 — At,
so that
€a = —(1 — Aat)pOatia + V(1 — A1) (djuq)?
~ {—pOata + V(0jue)?}(1 — Aut)
+(Aa — 24;)tv(0juq ). (5.2)

On the other hand, we know the following three facts.
First, the averaged quantity () is independent of vZ. Sec-
ond, when the field is homogeneous isotropic (4, = 0)
turbulence, the probability distribution of v, is nearly
Gaussian, which, in other words {—pg—:: + u(%%?)z},
is independent of v2 in terms of the moment method.
Third, rescaling the space variables, or the linear trans-
formation (2.5), does not change the distribution. And if
the original field (A4t = 0) for the asymptotic expansion
has the Gaussian distribution of velocity, we can expect
that {—pBaua + v(8uq)?} will continue to be indepen-
dent of v2.

Considering these three facts, one could say that the
v2 dependence of w2 is that of (9juq)?, so that our aim is
reduced to knowing the v2 dependence of (3%x)? for the

isotropic (Aqt = 0) turbulence. When the flow field is
isotropic and incompressible, then (pd,us) = 0, leading
to the result (e5) > 0. Then, the increase or decrease of
w2 with v2, the sign of the second derivative (c;), is the
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same as that of the last term on the right-hand side of
Eq. (5.2). For convenience, if we assume (4, A2, A3) =
(24, —A,—A), this term, (A, — 24;)(5%=)?, can be read

w5
as

_ aul 2 3’“1 2 6’11,1 2 X

(5.3a)

— au2 2 Buz 2 8u2 2 X
a=2 ‘A{5(b?1) ~(52) - (52)

(5.3b)

_ 6u3 2 3u3 2 6u3 2
*= A{5(am1) ~(5m) ~(5) |

(5.3¢c)

In Table III are listed the numerical results of the v2
dependence of (g—::)z for INI. It shows a clearly increas-

ing property with |v,| of the lateral derivative while those
of the longitudinal derivatives are almost constant and
equal to 1. The sign of the coefficient for the lateral
derivative in Eq. (5.3a) is opposite those of Egs. (5.3b)
and (5.3c). If A is positive, ST4 is the case, the first
one increases with |v,| and the other two decrease. Fol-
lowing the above argument of the moment method, this
is consistent with our numerical result of the probability
distribution for ST4; see also Fig. 2. We might obtain the
narrower distribution than the Gaussian for the velocity
in the other two directions, if we could simulate a much
larger Reynolds number flow.

3833
VI. SUMMARY AND DISCUSSION

We have simulated the turbulent field with the uniform
straining flow focusing our attention on the probability
distribution. The non-Gaussian distribution of the veloc-
ity field, which is similar to those obtained for the passive
scalar and velocity derivative fields in previous research
[4,5], is found in the present anisotropic flow. The proba-
bility distribution of the velocity in the positive straining
direction shows gradual decrease in its foot, while those
in the other (contracting) directions are nearly Gaussian.

We further examined the moment method, proposed
by Sinai and Yakhot [1], by checking the relation between
the probability distribution and the variation of g4 (va)-
Comparing with the results for the passive scalar and
the three-dimensional flow with two-dimensional struc-
ture, we know the pressure term is indispensable for the
Gaussian distribution. In other words, the non-Gaussian
distribution is due to the superior dissipation effect to
the pressure (nonlinear) effect.

To see the role of the intense vortex tube appearing in
the turbulent flow, we calculated the conditional proba-
bility distribution on vorticity magnitudes for both the
velocity in the straining direction and the passive scalar.
For the velocity field the deviation is caused in the high
vorticity region, while for the passive scalar it is caused
in the low vorticity region, although both of them show
similar non-Gaussian distribution. This might be under-
stood by considering the opposite role of straining in the
governing equations for V x © and V®. One may say
in general that the velocity field parallel to the vortex
tubes shows a flattened distribution, since we know that
the vorticity is intensified in the straining direction and
most of the vorticity tubes are aligned in this direction,

The asymptotic method proposed in the preceding sec-
tion shows how one can reduce the non-Gaussianity prob-
lem in an anisotropic flow to that of the isotropic flow
and the deviation is caused from the imbalance between
the pressure effect and the viscous effect. This method
succeeds in explaining the non-Gaussianity of the veloc-
ity in the straining direction. And furthermore, it pre-

TABLE III. The dependence of g, of (—g%:)z on v, for INIL.

[V
Moment 0 -

N =

.
;
§
:
:
:

0.990
0.995
0.978

0.992
0.971
0.975

0.969
0.953
0.991

(Zu1)? 1.007

8z,
(Luz)2 1.028
1.005

322,
u,
(53

(Bul )2
B8z2
(814; )2
B8z3
Sug )2
8z
(Bu] )2
Szg3
(Buz )2
812
(552)

0.965
0.977
0.964
0.953
0.964
0.936

0.986
0.983
0.981
0.975
0.973
0.975

1.014
1.001
1.006
1.002
0.994
1.031

1.005
1.004
1.042
1.021
1.023
1.086

0.971
0.927
1.003

1.002
0.937
1.008

1.015
0.948
0.978

1.023
0.968
0.988

1.030
0.974
0.993

1.023
0.996
1.044

1.173
1.159
1.095
1.217
1.199
1.212

1.032
1.030
1.063
1.058
1.028
1.121

1.101
1.045
1.097
1.148
1.063
1.173

1.164
1.094
1.072
1.186
1.169
1.144

1.151
1.123
1.090
1.204
1.188
1.147

1.167
1.174
1.141
1.270
1.231
1.249
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dicts that if one could simulate a much larger Reynolds
number flow, one might obtain the narrower distribution
for the velocity in a contracting direction. This idea is
also applicable to those problems with more general lin-
ear flow, such as (time-dependent) shear and/or rotating
flow. But the Gaussian distribution of velocity and non-
Gaussianity of velocity derivatives in an isotropic flow
still remains unanswered in this asymptotic method.
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